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Analysts associated with the Cowles Commission attached great importance to the distinction be-
tween structural and reduced-form models: in their view structural models, but not reduced-form 
models, allow the analysis of causal relations. They did not present clear justification for this view. 
Here we show that this insight is correct, and make the demonstration of it precise. Causal relations 
are shown to depend on parameter restrictions that are explicit in the structural form, but not in the 
reduced form when the coefficients are interpreted as unrestricted constants. The requisite param-
eter restrictions are those associated with implementation-neutral causation. A graphical procedure 
is outlined that identifies causal orderings and also the ordering based on implementation-neutral 
causation. The same procedure applied to reduced form models produces the implementation-
neutral causal ordering only if the parameter restrictions are explicitly incorporated in the reduced 
form. The analysis is applied in investigating the validity of the causal Markov condition. 

Introduction
In the early days of macroeconomics much was made 
of the distinction between structural and reduced-
form models, particularly by economists associated 
with the Cowles Commission at the University of Chi-
cago and Yale University. Most simply, a linear struc-
tural model can be written as 

,Ay Bx= 	 (1)

where y  denotes the internal variables of the model 
(those determined by the model) and x  denotes its 

external variables (those taken as given). Both x  and 
y  are vectors. { }ijA α=  and { }ikB β=  are matrices of 
constants.1 A  is square and nonsingular, and is nor-
malized by setting the elements of the main diagonal 
equal to one. Attention is restricted to linear models 
in this paper.2

1. Structural Forms and Reduced 
Forms
The Cowles economists distinguished the structural 
form of a model from its solution form,

1 ,y A Bx Gx−= ≡ 	 (2)

where { }.ikG γ=  Eq. (2) is usually called the reduced 
form.3 The structural form was viewed as conveying 
valuable information not contained in the reduced 
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form. It is difficult to extract from the Cowles econo-
mists’ discussions exactly how this information is 
connected with causation (it was usually associated 
with identification), and why it disappears in going 
from the structural form to the reduced form (again, 
see the discussion in (Hurwicz, 1962)), although the 
argument there is not easy to follow). In this connec-
tion a recurrent theme has been that the structural 
form coefficients can be used to analyze interven-
tions, and therefore locate causal orderings, whereas 
the reduced-form coefficients cannot be used in this 
way (see Section 3). There remains the question of 
why this is so. 

This paper shows that a version of the Cowles argu-
ment is correct. It discusses a definition of causation 
that is based on the reduced form, but is most easily 
implemented using the structural form. We character-
ize the precise nature of the information that is lost in 
passing from the structural to the reduced form. 

2. Equality and Causation
Many contemporary applications of structural models, 
particularly those directed toward graphical analysis of 
causation, use an alternative specification of structural 
models, written as

.y Ay Bx= + 	 (3)

Here A  has zeros on the main diagonal. In (3) the 
symbol = denotes causation, with the right-hand side 
variables of each equation interpreted as directly caus-
ing the left-hand side variable. Thus = is an assignment 
operator, as in computer languages. This definition ap-
pears to allow each of two internal variables to cause 
the other. Some analysts have accepted this implica-
tion (Heckman, 2005), but others take the view that 
simultaneously-determined variables should be distin-
guished from causally ordered variables. 

There is a problem with interpreting = as an assign-
ment operator in models incorporating simultaneity. 
Application of the assignment operator to the right-
hand side of the equation for iy  may require jy  as an 
input, and also vice-versa. Therefore these equations 
cannot be solved by application of the assignment op-
erator. It follows that = is interpretable as the assign-
ment operator only in fully recursive models. One 
would prefer to have a treatment of models in which 

there may be recursive blocks, but equations within 
such blocks are simultaneous. 

Under the alternative interpretation each equation in 
(3) has a distinct identity: the variables that are direct 
causes of iy  are all located on the right-hand side of the 
i -th equation. In the philosophy literature this property 
is known as “modularity”. In the formulation (1), in con-
trast, the characterization of = as a reflexive, symmetric 
and transitive operator implies that it is arbitrary which 
variable appears on the left-hand side of an equation. 
Thus we do not have modularity: the equations are best 
thought of as defining a single map from an m -dimen-
sional space of external variables to an n -dimensional 
space of internal variables. With = interpreted as a re-
flexive, symmetric and transitive operator, there is no 
direct connection with causation. 

The alteration in the meaning of = from its math-
ematical definition to its interpretation as representing 
causation has led some writers to express the view that 
graphical depictions of causal models, which incorpo-
rate the altered meaning of =, are fundamentally differ-
ent from their algebraic counterparts (Elwert, 2013). 
Below we will conclude that, contrary to this, there is 
no reason to avoid using = with its usual mathemati-
cal meaning in analyzing causation, and this is so in 
both equation-system-based and graph-based discus-
sions. This is a major attraction: economic models are 
derived from primitives by using mathematical calcu-
lations in which = is interpreted as a reflexive, symmet-
ric and transitive operator, as opposed to an assign-
ment operator. Proposing to change the interpretation 
of = upon termination of such derivations creates more 
problems than it solves. With = preserving its math-
ematical interpretion in the analysis of causation these 
problems do not arise. Thus structural models may or 
may not contain simultaneous blocks, consistent with 
their having a well-defined causal structure. 

3. Causation Based on “Ceteris 
Paribus”
Angrist and Pischke (2015) is one of the few recent 
sources in the economics literature that discusses 
causation explicitly and clearly (but not, in our view, 
correctly). Their account outlines a treatment of cau-
sation that is widespread, if not universal, in contem-
porary economics. If jy  appears on the right-hand 
side of the structural equation determining ,iy  then 
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jy  is defined to cause iy  “ceteris paribus”. Here “ce-
teris paribus” means that other variables in the equa-
tion determining ,iy  which may include both inter-
nal and external variables, are held constant. The ,i j  
element of A  is interpreted as giving a quantitative 
measure of the causal dependence of iy  on ,jy  ceteris 
paribus. The intervention on jy  is not connected with 
the external variables that, according to the model, 
determine .jy  

The ceteris paribus definition of causation relies 
on the problematic characterization of equality as an 
asymmetric relation, as discussed in the preceding sec-
tion. Interpreting the equality symbol instead as hav-
ing its usual mathematical meaning, as recommended 
here, implies that a definition of causation based on the 
“ceteris paribus” condition is inadmissible inasmuch as 
it treats the left-hand side variable differently from the 
right-hand side internal variables. 

Another problem is that analyzing causation using 
the ceteris paribus condition amounts to respecifying 
the model, so that the causal analysis is conducted us-
ing a model different from that actually proposed. An 
example will make this clear. Consider the recursive 
model

1 11 1 12 2y x xβ β= + 	 (4)

2 21 1 23 3y y xα β= + 	 (5)

3 31 1 32 2 34 4.y y y xα α β= + + 	 (6)

On the received account of causation, this model im-
plies that 2y  causes 3y , with causal constant 32 ,α  ce-
teris paribus. Here ceteris paribus means that 1y  and 

4x  are held constant. 
The operation of substituting a constant for the in-

ternal variable 1y  is inconsistent with the presence of 
eq. (4) in the model, since that equation states that 1y  
instead depends on the external variables 1x  and 2.x  
We are led to accommodate the ceteris paribus condi-
tion by deleting eq. (4) from the model. Further, the 
exercise involves treating 2y  as an external variable, so 
we also delete from the model eq. (5), which character-
ized 2y  as an internal variable. We are left with a model 
consisting of the single equation

3 32 2 34 4 ,ˆy y xα β= + 	 (7)

where 2ŷ  denotes the variable 2y  now redefined to be 
an external variable. 

In the model (7) there is no doubt that 2ŷ  causes 

3,y  and that the constant associated with this causa-
tion is 32 ,α  as asserted in the received account of cau-
sation. However, the model from which this conclu-
sion is drawn is completely different from the original 
model—eq. (4)-(6): the model as altered has different 
internal variables, different external variables and dif-
ferent equations. Rather than determining causation in 
the model as originally specified, applying the ceteris 
paribus condition in this way amounts to altering the 
model so as to create a setting in which causation has 
a clear meaning and is unambiguously associated with 
a constant in the model. Doing so does not constitute 
an analysis of causation in the original model. 

There is another way to make essentially the same 
point. An intervention on 2y  is reducible to an in-
tervention on 1,x  2x  or 3.x  By assumption these are 
external, and therefore are not linked by functional 
equations. But holding constant 1y  effectively con-
verts it into an external variable, thereby necessarily 
inducing a functional relation between 1x  and 2x . 
One of these (it is not clear which) becomes an in-
ternal variable. Again, the conclusion is that holding 
constant an internal variable constitutes an alteration 
of the model, and therefore is inadmissible in defin-
ing causal relations. 

Properly viewed, the statement that one internal 
variable causes another “ceteris paribus” consists of the 
assertion that external variables that are not determi-
nants of the cause variable, but not internal variables 
or external variables that are determinants of the cause 
variable, are held constant. In the remainder of this pa-
per the term “causation” is always taken to mean causa-
tion that is ceteris paribus in this sense, so the “ceteris 
paribus” proviso can be omitted.

4. Interventions
We discuss our preferred treatment of causation in the 
remainder of this paper. 

In the Cowles usage an intervention consists of 
a  modification of the structural equations intended 
to allow the analyst to determine what would happen 
under a given hypothetical change in the environment 
(Haavelmo, 1943; Heckman & Pinto, 2013). Using 
a model in this way to analyze causation involves alter-
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ing the setting, with the alteration depending on the 
causal question that is being asked. This practice was 
criticized in the preceding section. 

The insistence of the Cowles economists on repre-
senting interventions as modifications of structural 
equations led them away from an alternative much 
simpler formalization of interventions using elements 
of the model that are already available: external vari-
ables. Representing interventions as hypothetical al-
terations of external variables means that no change in 
the model is involved in analyzing interventions. There 
is no loss of generality in requiring that interventions 
be modeled as alterations of external variables since 
any conceivable intervention can be accommodated 
by inclusion of external “shift variables” in the model. 

Let us then initially set the external variables to 
preassigned values. The solution to the model under 
these values is termed the baseline. Then generate an 
intervention by changing the assumed value of one or 
more of the external variables and recompute the solu-
tion. One then determines the effect of the interven-
tion by comparing the values taken on by the internal 
variables under the intervention with those under the 
baseline specification. 

By designating a coefficient as an external variable 
rather than a constant the analyst is allowing for inter-
ventions on that variable. If the coefficients are vari-
ables the model is bilinear, not linear. These specifica-
tions are different. Treating constants as if they were 
variables, or converting constants to variables, is meth-
odologically questionable at best: it makes no sense to 
alter a model in using it to analyze the effect of an in-
tervention that is inherently ambiguous in the original 
formulation of the model. In an equation characterized 
as linear the coefficients are interpreted as constants. 
Labeling the coefficient a constant implies that inter-
ventions on that constant are ruled out: we do not ask 
mathematicians what would happen if π  were equal to 
a number other than 3.1416, and economists should 
not be asking the analogous question about the con-
stants of their models.4 

The requirement that analysts explicitly distinguish 
constants from external variables and treat each con-
sistently, even in analyzing interventions, enforces 
clarity about which contemplated interventions the 
analyst views as admissible and which are excluded 
from consideration. Here we part company from the 

Cowles economists who, as noted, were often unclear 
about this distinction.5

The same analysis applies to the frequently-en-
countered practice of analyzing interventions involv-
ing internal variables by relabeling cause variables 
as external variables and deleting from the model 
the equations that determine them (here we leave 
aside the fact that the equations to be deleted can be 
uniquely ascertained only in fully recursive models). 
Such a procedure constitutes a substantive modifica-
tion of the model even in fully recursive models, as 
in (4)-(6). The treatment to be specified, in contrast, 
will provide a way to analyze causal relations among 
variables in a model without at the same time chang-
ing the model. 

In forecasting exercises the general practice is to 
specify probability distributions for external variables 
and then derive the distributions of internal variables 
by applying the reduced-form equations. Analyzing 
interventions on such models, in contrast, involves 
specifying particular realizations of the external vari-
ables, as noted above. Contrary to some discussions, 
there is no contradiction between assigning probabil-
ity distributions to external variables in using a model 
to generate forecasts and setting the realizations of 
these variables to determine effects of interventions. 
In modeling the price of some crop an analyst could 
specify that the harvest depends on the weather, and 
then produce a forecast by assuming a probability dis-
tribution for weather-related external variables. Equal-
ly, one could analyze what the crop would be if the 
weather were good. The former exercise is a forecast, 
while the latter constitutes analysis of an intervention. 
The same model can be used in either application. 

5. Causation
Causal relations can be modeled in terms of interven-
tions. One can determine for each internal variable the 
set of external variables each of which affects the value 
of that internal variable. The elements of these external 
sets are causes of the internal variable: if ( )iy  is the 
external set for ,iy  then jx  ∈  ( )iy  causes ,iy  written 

j ix y→ . The effect on internal variables of interven-
tions on external variables can be calculated by ap-
plying the reduced form to the difference between the 
baseline values of external variables and their values 
under intervention: Δij jx� . 
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Causal relations may also be defined in which the 
cause variable as well as the effect variable is internal. 
Then the intervention consists of any of the possible 
changes in the values of the variables in the external set 
of the cause variable that lead to a given change in the 
value of the cause variable. If ( )jy  is a proper subset 
of ( )iy  we will say that jy  causes ,iy  written j iy y→  
(here we follow the lead of Simon, 1953). The condition 
means that an intervention on any element of ( )jy  in-
duces an alteration in ,iy  and also that there exists some 
element of ( )iy  that is not in ( ),jy  so as to assure the 
asymmetry of causation. The requirement of a proper 
subset rather than a subset allows us to distinguish be-
tween variables that are causally ordered and those that 
are simultaneously determined (in which case the vari-
ables have the same external sets). The contribution here 
is to provide a graphical counterpart to Simon’s analy-
sis and, starting in Section 8, to extend the analysis to 
a more restricted characterization of causation. 

Note that analyzing causation so defined does not 
involve alteration of the model. 

The proper subset condition implies that no internal 
variable has an external set consisting of a singleton. It 
would be counterintuitive at best to have a scale multi-
ple of an external variable labeled an internal variable: 
doing so involves treating differently two variables that 
are not substantively different in terms of the structure 
of the model. Finally, allowing singleton external sets 
would seem to imply that external variables always 
cause themselves. This specification, besides conflict-
ing with the definition of an external variable, would 
be odd at best. 

Ruling out singleton external sets is more a nota-
tional convention than a substantive restriction; to en-
sure exclusion of internal variables with singleton ex-
ternal sets one has only to solve them out of the model 
by replacing the internal variable with the external 
variable and adjusting equation coefficients appropri-
ately to allow for the scale factor. 

6. Causal Graphs
As we have seen, causal orderings based on compari-
sons of external sets are derived by comparing all the 
pairs { , }j ix y  and { , }.j iy y  Pairs { , }i jx x  are not con-
nected because, being external, they are not caus-
ally related. If  ( )j ix y∈  we have j ix y→ . If ( )jy  is 
a proper subset of ( )iy  we have .j iy y→  

Given availability of numerical values for the ele-
ments of A  and B  one determines the causal order-
ing by solving for the reduced form, and then deter-
mining the existence or nonexistence of causation 
between any two variables by checking whether the 
external set of one is a proper subset of that of the 
other. This is directly inferred from the location of ze-
ros in the reduced form. If one knows the location of 
zeros in A  and B  but does not have numerical values 
for parameters, as is the case in theoretical analysis, 
this method requires using symbolic matrix inversion 
software to determine the location of zeros in the re-
duced form. This may not always be convenient. An 
alternative procedure would be to assign arbitrary 
values to all structural coefficients, and then compute 
the reduced-form coefficients. Barring an unlucky 
choice of numerical values, this procedure would 
produce zeros in the same locations as the symbolic 
calculation would. The easiest approach, at least with 
simple models, involves working directly with the 
structural model instead of the reduced form, and us-
ing graphical methods. 

The problem consists of deriving from the equa-
tions of the model a graph such that we have j ix y→  
and j iy y→  if and only if there exists a path from jx  
to iy  or jy  to iy  involving an ordered n -tuple of in-
ternal variables such that each member has an exter-
nal set that is strictly greater than that of its predeces-
sor. In this section we outline the construction of such 
a graph. 

In advocating the use of graphical methods in ana-
lyzing causation we follow the mainstream in causal 
analysis, notably Pearl (2000). However, our use of 
graphical methods differs from that found in the main-
stream tradition. In the received analysis the causal 
graph is taken directly from the structural model: the 
variables on the right-hand side of each equation are 
identified as direct causes of the left-hand side variable. 
We took issue with this specification in Section 2. 

A preliminary—and trivial—first step consists of 
construction of the structural graph. This consists of 
a graph in which each variable is connected by an un-
directed edge to each other variable that appears in the 
same structural equation. The use of undirected edges 
reflects the interpretation of = as a reflexive, symmetric 
and transitive operator, as discussed in Section 2. Each 
edge can be labeled with the corresponding coefficient 
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in the mathematical form of the model, although these 
labels may be omitted depending on the application. 
Hereafter we will use the structural graphs of a model 
in place of its mathematical form, the two being inter-
changeable. Doing so facilitates comparison of struc-
tural and causal graphs. 

A causal graph consists of a graph that connects 
with arrows variables that are causally linked, where 
the causal arrow here has the same meaning as in Sec-
tion 5 (except that, as noted below, in causal graphs 
it is convenient to omit causal arrows when they are 
implied by the transitivity of causation). This involves 
connecting pairs of variables such that the effect vari-
able has an external set that is strictly larger than that 
of the cause variable, except when there exists an in-
termediate variable that is causally related to both. In 
the presence of such a variable the two original vari-
ables are directly connected by an arrow only if there 
also exists an undirected edge connecting them in the 
structural graph. Existence of such an edge reflects the 
fact that the two variables are causally linked both di-
rectly and indirectly. We want the graph to show both 
direct and indirect causation when both are present; 
this is possible only if we delete all causal arrows that 
are implied by the transitivity of causation. 

Some models have simultaneous blocks, meaning 
that nonsingleton sets of internal variables have the 
same external sets. Such variables are not connected by 
arrows. Instead, each member of a simultaneous block 
is connected with an arrow to each variable outside the 
block that is connected by a directed edge to any mem-
ber of the block. In this case causal arrows may rep-
resent the connection between non-adjacent variables. 
Example 2 below illustrates this construction. 

The procedure just outlined generates a graph in 
which each internal variable is connected to its ances-
tors by paths of incoming arrows and to its descen-
dants by paths of outgoing arrows. Parents and chil-
dren are special cases of ancestors and descendants 
where the connection is achieved via a single arrow, 
so that causation is direct. Causation is indirect when 
more than one arrow is involved in the path from cause 
variable to effect variable. 

The causal graph allows an easy representation of 
the reduced-form coefficients. With each causal path 
is associated a path coefficient consisting of the prod-
uct of the edge coefficients associated with the arrows 

that generate the path. Each internal variable is con-
nected to each of the variables in its external set by one 
(or more) causal path(s). If there exists only one path 
connecting the two variables the reduced-form coef-
ficient of that internal variable with respect to each 
external variable in its external set equals the path 
coefficient for that path. If there exist more than one 
path connecting the two variables, the reduced-form 
coefficient equals the sum of the path coefficients (see 
Examples 3 and 4). 

Note that this characterization of causal coefficients 
applies without qualification only when the cause vari-
able is external, as with the reduced form. The corre-
sponding characterization when the cause variable is 
internal is found in Sections 8, 9 and 10. 

7. Examples
The algorithm presented here is illustrated using ex-
amples. In each case the model is defined using a struc-
tural graph. The associated causal graph is presented 
when the structural and causal graphs differ. As will be 
seen, sometimes the two graphs coincide (with undi-
rected edges replaced by arrows; hereafter this proviso 
is omitted), and sometimes not. 

Example 1
The structural graph shown in Figure 1 depicts the 
simplest model in which the internal variables are 
causally ordered. It is discussed in Section 9. The asso-
ciated causal graph is identical to the structural graph. 

Example 2
The standard economist’s supply-demand model, in 
which each of two equations includes price, quantity 
and one external variable, is the simplest model that 
includes simultaneous determination of a block of 
internal variables, here consisting of 1y  and 2y . The 
internal variables, price and quantity in the supply-de-
mand example, are not causally ordered. Its structural 
graph is shown as Figure 2(a). The causal graph, shown 
as Figure 2(b), consists of arrows linking each of the 
internal variables to each of the external variables, with 
the internal variables not causally connected. 

Example 3
In Figure 3 the variables 1y  and 2y  have external sets 
neither of which is a subset of the other, and 3y  has 
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an external set that properly contains the external sets 
of each of 1y  and 2.y  Therefore the causal form of the 
model coincides with the structural form: 1y  and 2y  
are not causally related, but each causes 3y . The ex-
ternal variable 2x  affects 3y  via two indirect paths, so 
the reduced-form coefficient of 3y  with respect to 2x  
is 31 12 32 22.α β α β+  

Example 4
The structural model shown in Figure 4 differs from 
that in Figure 1 due to inclusion of an edge connecting 

2x  and 2.y  Here 2x  and 2y  are connected both directly 
and indirectly. The causal graph in Figure 4 coincides 
with its structural graph. 

Example 5
Here 2y  causes 4y  in Figure 5(b) despite the absence of 
an edge connecting them in Figure 5(a). This is so be-
cause an intervention on 2y  is necessarily attributable to 
an intervention on 2x  or 3,x  and these cause a change in 

4.y  Note that, from comparison of Figures 2 and 5, pres-
ence of an edge connecting two variables in the structur-
al graph is neither necessary nor sufficient for presence 
of an arrow connecting them in the causal graph. 

8. Implementation-Neutral 
Causation
For many purposes the notion of causation just out-
lined is too weak. This is so because even if jy  causes 

Figure 4. 
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iy  different interventions consistent with a given Δ jy  
can induce different iy . For example, suppose that we 
consider an intervention 1Δy  on 1y  in some model. 
Any intervention on an internal variable is viewed 
as generated by an underlying intervention on the 
variables in its external set. In the model of Example 
4 the intervention 1Δy  could have been caused by an 
intervention of 1 11Δ /y �  on 1x  or 1 12Δ /y �  on 2x  (or, 
of course, a linear combination of these). There results 

2 21 1y y��Δ Δ  in the first case and (� � �21 22 12 1/ )Δy�  in 
the second. The question “What is the effect of 1y  on 

2 ?y ” does not specify which is the case, leading to the 
conclusion that the magnitude of the causal effect of 1y  
on 2y  is not well defined .  

One could object against this line that in the model 
of Example 3 1Δy  results unambiguously in an effect 

31 1Δy�  on 3y  if 2y  is held constant. We argued in Sec-
tion 3 that holding constant an internal variable in this 
way constitutes an alteration of the model (by induc-
ing a functional relation between variables specified as 
external; in this case 2x  and 3x ). Avoiding altering the 
model leaves us with the conclusion that the effect of 

1y  on 2y  in the model of Example 3 as specified is in 
fact inherently ambiguous. 

In other cases this ambiguity does not occur. If in ad-
dition to j iy y→  we have a model in which all the inter-
ventions that lead to a given value of Δ jy  map onto the 
same value of ,iy  the effect of Δ jy  on iy  does not depend 
on how Δ jy  is implemented (that is, which element(s) of 

( )jy  is (are) intervened upon). In that case causation 
is implementation neutral. The causal relation between 

1y  and 2y  in Figure 1 is implementation neutral: the ef-
fect on 2y  of an intervention of 1 11Δ /y �  on 1x  (equal to 

21 1Δ )y�  is equal to that of an intervention of 1 12Δ /y �  on 

2x . We refer to the causal relation so defined as IN-cau-
sation. If jy  causes iy  and the causation is implemen-
tation neutral we will write .j iy y⇒  For each internal 
variable ,iy  each jx  in ( )iy  IN-causes ;iy  for arbitrary 
internal variable ,jy  jy  may or may not IN-cause ,iy  
even if ,j iy y→  as we have just seen. 

If jx  or jy  IN-causes iy  by definition there exists 
a constant that measures the effect of jx  or jy  on iy . 
This constant is the same for all possible underlying in-
terventions. That coefficient may or may not coincide 
with the parameter ijα  in the structural model (it does 
so when only one path connects jy  and iy , but not 
otherwise). Note that, in the discussion in Section 3 of 

the ceteris paribus condition, in the recursive model 
(4)-(6) 2y  does not IN-cause 3y : if the intervention in-
ducing 2Δy  is on 3,x  the effect on 3y  is different from 
that occurring if the intervention is on 1x  or 2x . There-
fore the constant 32α  cannot be interpreted causally. In 
contrast, 1y  does IN-cause both 2y  and 3,y  so 21α  and 

31α  can be interpreted causally. 
For a related analysis under the rubric of “spurious 

correlation” (see Simon, 1954). By “spurious correla-
tion” Simon meant correlation where there is no causa-
tion. Here Simon can be interpreted as anticipating the 
idea of implementation neutrality, although his analy-
sis differs from that found here.6

The IN-causal ordering consists of all the pairs ,j ix y  
and ,j iy y  such that j ix y⇒  and j iy y⇒ . IN-causation 
will be our primary notion of causation: if j iy y→  
but not j iy y⇒  we do not have enough information 
about the intervention to characterize its effect on iy  
quantitatively. IN-causation is discussed more fully in 
LeRoy (2016),  and is applied to treatment evaluation 
in LeRoy (2018).

9. IN-Causation in Reduced-Form 
Models
We review the criteria for IN-causation in the simplest 
nontrivial reduced-form model discussed above in 
which two internal variables are causally ordered:

1 11 1 12 2y x xγ γ= + 	 (8)

2 21 1 22 2 23 3.y x x xγ γ γ= + + 	 (9)

In (8)-(9) the term in the 1,3 position in G  is zero, 
with other terms nonzero. Hereafter we will refer to 
equation systems like (8)-(9), where the nonzero val-
ues of G  are interpreted as unrestricted constants, as 
“generic reduced forms”.7 In (8)-(9) we have 1 2 ,y y→  
but not necessarily 1 2.y y⇒  

As discussed in LeRoy (2016), under the parameter 
restriction

21 22

11 12

γ γ
γ γ

= 	 (10)

we can define the constant 21α  by

21 22
21

11 12

γ γ α
γ γ

= ≡ 	 (11)
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and write the model in structural form as

1 11 1 12 2y x xβ β= + 	 (12)

2 21 1 23 3.y y xα β= + 	 (13)

In (12)-(13) we have 1 2.y y⇒  The same is true in the 
reduced-form version of the model, eq. (8)-(9), under 
the parameter restriction (10), but not otherwise. 

Inspection of the generic reduced form allows de-
termination of whether two variables are causally re-
lated, in the sense of →  as defined above. This is so 
because the generic reduced form contains the infor-
mation about whether the external set of 1y  is a proper 
subset of that of 2 ,y  in which case we have 1 2 ,y y→  or 
not. Whether the parameter restrictions required for 
IN-causation, (10) in our example, are satisfied cannot 
be determined from the generic reduced form (8)-(9) 
without restrictions on the parameters. 

If the generic reduced form can be rewritten as

1 11 1 12 2y x xγ γ= + 	 (14)

2 21 11 1 21 12 2 23 3y x x xα γ α γ γ= + + 	 (15)

for some 21,α  it satisfies the parameter restrictions (11) 
by construction, implying that the derivation of the 
structural form (12)-(13) is immediate. We will use the 
term “restricted reduced form” to refer to the version 
of the reduced form that incorporates the reduced-
form restrictions implied by some structural model, 
as in (14)-(15). Thus structural models, or equivalently 
restricted reduced forms, contain information about 
both causation and IN-causation, as distinguished 
from unrestricted reduced forms, which do not con-
tain information about IN-causation.8

The possibility of encoding structural information 
in reduced forms has relevance for the ongoing debate 
between statisticians, economists and members of 
other disciplines about the meaning of structural equa-
tions. Statisticians and econometricians (see Haavel-
mo, 1943; Pearl, 2015; Wermuth, 1992) have taken the 
view that the coefficients of structural models have 
no clear meaning because they are not connected to 
the probability distribution of internal variables. This 
statement is correct when the probability distribution 
of internal variables is viewed as generated by applying 

the generic reduced form to the external variables, the 
probability distribution of which is assumed. However, 
it is incorrect as applied to the restricted reduced form: 
as the above example shows, structural parameters like 

21α  in fact appear in restricted reduced forms, and 
therefore can be viewed as figuring in the link between 
assumed distributions of external variables and the im-
plied distributions of internal variables. 

10. IN-Causation in Structural 
Models
As observed in Section 8, jy →  iy  does not imply 

.j iy y⇒  In graphical terms this is so because there 
may exist paths communicating causation that con-
nect variables in the external set of jy  with iy  but do 
not pass through .jy  Existence of such paths implies 
that the effect on iy  of an intervention resulting in Δ jy  
differs under different such interventions. When there 
are no such paths we have j iy y⇒ .9

A path connecting two variables is a directed path 
when all the arrows along the path point in the same 
direction. If that condition fails causation along that 
path is blocked, a result that has figured prominently 
in earlier causation discussions. This observation is 
relevant in considering the converse of the proposi-
tion stated above (that if all paths from elements of 

( )jy  to iy  pass through jy  then we have ).j iy y⇒  
The converse would be that if j iy y⇒  then all paths 
from ( )k jx y∈  to iy  pass through jy . This, how-
ever, is not true. Consistent with j iy y⇒  we may 
have paths connecting elements of ( )jy  and iy  that 
are defined in the causal form but are not defined in 
the structural form. Also, there may exist paths from 

( )k jx y∈  to iy  that are defined in the structural form 
but are not directed. 

To see that such paths can coexist with IN-causa-
tion, consult Figure 6. We have that 1 3y y⇒  despite the 
existence of two paths in the causal graph that connect 

2x  to 3y  but do not pass through 1y : { 2 ,x  2 ,y  3,  3}y  
and { 2 ,x  2 ,y  3}.y  However, the first of these is not a di-
rected path and the second is not the counterpart of 
a path in the structural graph, since there is no edge 
connecting 2y  and 3.y  

11. The Causal Markov Condition
Up to now the analysis has been theoretical: we have 
separated the task of defining causation from that of 
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testing causal models and estimating causal coeffi-
cients. Focusing on the former, as we have done, meant 
that there was no need to discuss probability distribu-
tions, observability of variables by the analyst or iden-
tification. Ultimately we do want to test causal models. 
An important tool that has been applied to this end 
is the causal Markov condition which, it is asserted, 
makes possible empirical testing of causal orderings 
and empirical estimation of causal parameters. 

The causal Markov condition, as formulated by 
Spirtes, Glymour and Scheines (1993) for example, 
states that every variable of a model is probabilistically 
independent of all variables other than its descendants 
and parents, given its parents. The proposition that 
lack of correlation implies causation thus reverses the 
usual statement. 

The status of the causal Markov condition is am-
biguous. In places it is treated as an axiom separate 
from other assumptions specifying the structure of 
the model. In other places it is regarded as part of the 
definition of Bayesian networks, which usually involves 
sidestepping the question of whether a causal graph is 
a Bayesian network. Finally, it is sometimes treated as 
a substantive proposition that can be evaluated on phil-
osophical grounds (see Hausman & Woodward, 1999). 

The most obvious problem here is that, from el-
ementary probability theory, two random variables are 
always independent conditional on one of them. It fol-
lows that we can certainly delete “and parents” from 
the definition of the causal Markov condition (this 

point was noted by Hausman and Woodward (1999)). 
A slightly less obvious point is that, because any vari-
able can be written as a deterministic function of its 
parents (shocks, being random variables, are included 
in the set of parents of the variables they cause), any 
variable is independent of all variables, including its 
descendants, conditional on its parents. It follows that 
the causal Markov condition as just stated is valid, but 
trivially so. 

These points, of course, depend on the definition 
adopted in this paper of parents as the set of all vari-
ables that directly cause the variable in question. In 
treatments of causation one often sees discussions 
that presume that error terms are not causal par-
ents. However, no guidance is given as to the basis 
for distinguishing variables that are causal parents 
from those that cause a variable but are not counted 
among its parents. Variables characterized as errors 
are, of course, unobserved, but there is no apparent 
justification for denying their status as causal parents 
for this reason: the definition of causal orderings does 
not depend on which variables are observable. Haus-
man and Woodward (1999) explicitly posit existence 
of causal variables that are not included in the model 
under consideration and therefore do not qualify 
as parents. Presumably these appear as variables in 
some unspecified meta-model. It is not explained 
what purpose it serves to make this distinction, at 
least without connecting the discussion to the topic 
of model misspecification. 

Figure 6. 
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Despite the arguments just made, there are several 
propositions similar to the causal Markov condition 
that are correct and nontrivial, and are easily derived 
in the framework set out here. These derivations all de-
pend on the assumption that the external variables are 
probabilistically independent. If that condition fails 
the interpretation is that some correlations between 
the variables of a model are generated by the model’s 
causal structure, while others are buried as unmod-
eled correlations among external variables. There is no 
empirical evidence that can determine which is which. 
Thus one cannot distinguish empirically between cor-
relations generated as a consequence of the model’s 
causal structure and those resulting from correlations 
among external variables. 

We set forth two such propositions; no doubt there 
are others. The first proposition is that, assuming that 
the external variables are independent, if two variables 
have a single common ancestor they are correlated un-
conditionally, but are independent conditional on that 
ancestor. The reason is that when external variables are 
assumed to be independent the correlation between 
two internal variables results from overlap between 
their external sets. By assumption that overlap con-
sists of a single external variable (if it were internal its 
parents would also be ancestors). Conditioning on the 
common ancestor effectively implies that the external 
sets of the two variables are disjoint, and therefore the 
variables are independent. If there are more than one 
common ancestor it is necessary to condition on all of 

them; conditioning on fewer is consistent with the two 
variables being conditionally correlated, as is easy to 
confirm by example. 

In the model shown as Figure 7(a) the variables 1y  
and 2y , having the common ancestor 3x , are correlat-
ed. Conditioning on 3x  effectively removes that vari-
able from the model, and therefore removes also the 
edges connecting it with its children. The graph Figure 
7(b) results. With the external sets of 1y  and 2y  now 
disjoint, those variables are independent. 

The second proposition, unlike the first, involves 
implementation-neutral causation. It states that 

1 2y y⇒  implies that 2y  is independent of any ancestor 
of 1y  conditional on 1.y  This conclusion is illustrated 
in Figure 1. Conditional on 1,y  2y  depends only on 

3.x  But the definition of IN-causation implies that 3x  
is not an element of the external set of any ancestor of 

1y . Therefore any variables that are ancestors of 1,y  in 
this case 1x  and 2 ,x  are independent of 3x , and there-
fore also of 2y  conditional on 1.y  Note that this result, 
like that of the preceding paragraph, depends critically 
on the assumption that the external variables are inde-
pendently distributed. Here if 3x  is correlated with 1x  
or  the proposition under discussion fails.

The proposition just stated has a partial converse: if 

k j iy y y→ →  and ky  is independent of iy  conditional 
on ,jy  then we have j iy y⇒ . The fact that we have 

k j iy y y→ →  implies that there exist paths connecting 

ky  and .iy  The fact that ky  and iy  are independent 
conditional on jy  means that all directed paths con-

Figure 7. 
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necting ky  and iy  pass through .jy  This is the defini-
tion of IN-causation. 

Existence of this theoretical result implies that, sub-
ject to maintained assumptions, IN-causation is test-
able. The availability of a partial converse suggests that 
in some settings the test may have high power. 

12. Conclusion
In the introduction it was noted that the Cowles 
economists did not provide a clear statement of why 
structural models are better suited for causal analysis 
than reduced forms. We now have such a statement: 
generic reduced-form models incorporate information 
about the subset relations implying the causal order-
ing we have denoted by ,→  but not about the param-
eter restrictions necessary for implementation neutral 
causation, denoted by .⇒  Structural models and re-
stricted reduced-form models contain both sources 
of information. Comparing results for structural and 
generic reduced-form models, we see that solving for 
the generic reduced form and using it to diagnose cau-
sation without incorporating the parameter restric-
tions involves a loss of information, just as the Cowles 
economists asserted. 

It is worth noting that our justification for the 
Cowles analysis involves only causation. In contrast, 
most discussions connect the Cowles analysis primar-
ily with identification. While there is no question of 
the importance of parameter restrictions for identifica-
tion in structural models, here we have not introduced 
a distinction between observed and unobserved vari-
ables. This omission reflects the fact that causal order-
ings do not depend on which variables are observed. 
Questions relating to identification and estimation of 
causal parameters do require specification of which 
variables are observed, of course.
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13. Endnotes

1. Hurwicz (1962) was one of the few Cowles economists 
who proposed a precise definition of “structural”. 
Rather than simply characterizing structural mod-
els as those in which y  is preceded by ,A  as here, 
his discussion brought in the idea of identification. 
In Hurwicz’s usage, causal analysis consisted of de-
termining the effects of alterations in structure. In 
that analysis the elements of A  and B  were char-
acterized as constants but treated as external vari-
ables. Here, in contrast, we maintain the status of A  
and B  as matrices of constants. 

2. Hurwicz (1962) wrote the prototype structural model as

,Ay b= 	 (16)

where b  is a vector of constants and A  is not neces-
sarily square. This formulation allows the possibility 
that the model has fewer equations than variables, 
so that some of the variables are external. Hurwicz’s 
notation did not distinguish internal from external 
variables. Failing to do so left it unclear which vari-
ables the model is intended to explain. 
Other Cowles analysts, such as Wold (1954), did 
distinguish between external and internal variables. 
In some applications of causation analysis the as-
sumption of linearity is unsuitable. For example, 
in analyzing treatment effects the treatment vari-
able, which is binary, is specified to be a function 
of real-valued external variables. Such a function is 
necessarily nonlinear. See LeRoy (2018) for analysis 
of such models. 

3. Here x  can include both observed and unobserved 
variables. The coefficients with respect to unob-
served external variables are well defined only sub-
ject to an arbitrary scaling of the latter. The scaling 
usually adopted is to set either ijα  or ,ijγ  depending 
on whether one is working with the structural form 
or the reduced form, equal to 1 when jx  is unob-
served. We follow this convention. 

4. Thus analyses of interventions differ from compara-
tive statics or comparative dynamics exercises, in 
which changes in constants are acceptable. This is 

so because the purpose of the latter exercises is to 
compare different models, not to determine the ef-
fects of changing the value of an external variable 
in a given model. 

5. In the Cowles treatment of causation, and also in many 
recent discussions in the philosophy literature, ana-
lysts insisted that causal interpretation of a model 
requires a property of invariance. The meaning of 
invariance in the context of implementing altera-
tions of a model’s structure was never made clear de-
spite much discussion. However, with interventions 
characterized as consisting of hypothetical changes 
in the values of external variables rather than as 
general structural changes, failure of invariance can 
only mean that terms specified as constants should 
instead be modeled as variables. In well-specified 
models labeling α  as a constant means that α  re-
ally is constant. Therefore that variable is not a can-
didate for intervention, and is not affected by inter-
ventions. Reminding analysts that if their models are 
misspecified their diagnoses of causation are likely to 
be wrong is hardly necessary. We see that invariance 
disappears as a feature of causal attributions that 
requires extended discussion. 

6. In Wold (1954) (see also Wermuth, 1992) it is argued 
that multiequation models that are fully recursive 
inherit many of the properties of single-equation 
models. The fact that 1,y  but not 2 ,y  IN-causes 3y  
in the model (4)-(6) suggests that this result does not 
carry over directly to causation. 

7. Here and throughout we take the definition of generic-
ity to exclude special cases (but not to rule out the 
presence of zeros in the G  matrix, as in (8)-(9)). 
For the simplest example of what is ruled out, note 
that the restriction 21 22γ γ= =  21 0α =  satisfies the 
condition (10), but we do not have 1 2.y y⇒  This 
is so because under the restriction just stated 2y  
becomes a rescaled version of the external variable 

3,x  implying that interventions on 1y  do not cause 
changes in 2.y  The stated restriction is nongeneric 
within the space of parameter values satisfying (10), 
so we ignore such cases. 
In economic models, particularly those modeling 
agents assumed to have rational expectations, one 
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finds relations of the form 1 2 3,y y yδ= −  where δ  is 
the regression coefficient of 2y  on 3.y  Here 1,y  the 
regression residual, and 3,y  the regression explana-
tory variable, are uncorrelated by construction. 
Such relations violate the genericity requirement 
since δ  is a function of the other parameters in the 
model. One way to handle this problem is to relabel 
δ  as an internal variable and include the function 
determining its value as an equation in the model. 
This, however, results in a nonlinear model. 

8. To make the same point in vector-matrix notation, note 
that the restricted reduced form can be written as

1
11 121

2
21 11 21 12 232

3

0
.

x
y

x
y

x

β β
α β α β β

 
    =           

	 (17)

This can be shown to coincide with the structural 
form (12)-(13), written in vector-matrix form as

1
11 121

2
2321 2

3

01 0
,

0 01

x
y

x
y

x

β β
βα

 
      =       −        

	 (18)

by inverting the matrix and multiplying. 

9. As noted in LeRoy (2016), the above representation of 
IN-causation in terms of graphs in which all paths 
from the external set of the cause variable to the ef-
fect variable pass through the cause variable is de-
scribed in Woodward (2007).
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